
Intel® Math Kernel Library
(Intel® MKL)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Highly optimized threaded math routines
§  Performance, Performance, Performance!

Industry’s leading math library
§  Widely used in science, engineering, data processing

Tuned for Intel® processors – current and next generation

Intel® Math Kernel Library (Intel® MKL) Introduction

More math library users depend on MKL
than any other library

EDC North America
Development Survey

2016, Volume I

Be multiprocessor aware
•  Cross-Platform Support

•  Be vectorised , threaded, and
distributed multiprocessor aware

Intel Engineering Algorithm Experts

Optimized code path dispatch auto	

Intel®
Compatible
Processors

Past Intel®
Processors

Current
Intel®

Processors

Future
Intel®

Processors

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel MKL unleashes the performance benefits of
Intel architectures

0

50

100

150

200

64 80 96 104 112 120 128 144 160 176 192 200 208 224 240 256 384Pe
rf
or
m
an

ce
	(G

Fl
op

s)

Matrix	size	(M	=	10000,	N	= 	6000,	K 	= 	64,80,96,	…,	384)

Intel®	Core™	Processor	i7 -4770K

Intel	MKL	- 	1	thread Intel	MKL	- 	2	threads Intel	MKL	- 	4	threads
ATLAS 	- 	1	thread ATLAS 	- 	2	threads ATLAS 	- 	4	threads

0

500

1000

1500

256 300 450 800 1000 1500 2000 3000 4000 5000 6000 7000 8000

Pe
rf
or
m
an

ce
	(G

Fl
op

s)

Matrix	size	(M	=	N)

Intel®	Xeon®	Processor	E5-2699	v3

Intel	MKL	- 	1	thread Intel	MKL	- 	18	threads Intel	MKL	- 	36	threads
ATLAS 	- 	1	thread ATLAS 	- 	18	threads ATLAS 	- 	36	threads

Configuration	Info	- Versions:	Intel®	Math	Kernel	L ibrary	(Intel®	MKL)	11.3,	ATLAS*	3.10.2;	Hardware:	Intel®	Xeon®	Processor	E5-2699v3,	2	Eighteen-core	CPUs	(45MB	LLC,	2.3GHz),	64GB	of	RAM;	Intel®	Core™	Processor	
i7-4770K,	Quad-core	CPU	(8MB	LLC,	3.5GHz),		8GB	of	RAM;	Operating	S ystem:	RHEL 	6.4	GA	x86_64;	
Software	and	workloads	used	in	performance	tests	may	have	been	optimized	for	performance	only	on	Intel	microprocessors.		Performance	t ests,	such	as	S YSmark	and	MobileMark,	are	measured	using	specific	
computer	systems,	components,	software,	operations	and	functions.		Any	change	to	any	of	those	factors	may	cause	the	results	t o	vary.		You	should	consult	other	information	and	performance	tests	to	assist	you	in	
fully	evaluating	your	contemplated	purchases,	including	the	performance	of	that	product	when	combined	with	other	products.			 *	Other	brands	and	names	are	the	property	of	their	respective	owners.			Benchmark	
Source:	Intel	Corporation
Optimization	Notice:	Intel’s	compilers	may	or	may	not	optimize	to	the	same	degree	for	non - Intel	microprocessors	for	optimizations	that	are	no t	unique	to	Intel	microprocessors.	These	optimizations	include	
S SE2,	S SE3,	and	S SSE3	instruction	sets	and	other	optimizations.	Intel	does	not	guarantee	the	availability,	functionality,	or	 effectiveness	of	any	optimization	on	microprocessors	not	manufactured	by	Intel.	
Microprocessor-dependent	optimizations	in	this	product	are	intended	for	use	with	Intel	microprocessors.	Certain	optimizations	no t	specific	to	Intel	microarchitecture	are	reserved	for	Intel	microprocessors.	
Please	refer	to	the	applicable	product	User	and	Reference	Guides	for	more	information	regarding	the	specific	instruction	sets covered	by	this	notice.		Notice	revision	#20110804	.	

DGEMM	Performance	Boost	by	using	Intel®	MKL 	vs.	ATLAS*	

3

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

0

200

400

600

800

1000

1200

1400

P
er

fo
rm

an
ce

 (G
Fl

op
s)

Matrix size (M = N)

Intel MKL - 1 thread Intel MKL - 22 threads
Intel MKL - 44 threads

DGEMM Performance
On Intel® Xeon® Processor E5-2699 v4

Configuration Info - Versions: Intel® Math Kernel Library (Intel® MKL) 2017; Hardware:Hardware: Intel® Xeon® Processor E5-2699 v4, 2 Twenty-two-core CPU (55MB smart cache, 2.2GHz), 64GB of RAM; Intel® Xeon Phi™ Processor 7250, 68 cores (34MB L2 cache, 1.4GHz), 96 GB of DDR4 RAM and 16 GB MCDRAM; Operating System:
RHEL 7.2 GA x86_64;

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

0

500

1000

1500

2000

2500

P
er

fo
rm

an
ce

 (G
Fl

op
s)

Matrix size (M = N)

Intel MKL - 16 threads Intel MKL - 34 threads
Intel MKL - 68 threads

DGEMM Performance
On Intel® Xeon Phi™ Processor 7250

Intel MKL 2017 Performance

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimized Mathematical Building Blocks

Linear Algebra

• BLAS
•  LAPACK
• ScaLAPACK
• Sparse BLAS
• Sparse Solvers
•  Iterative
• PARDISO* SMP &

Cluster

Fast Fourier
Transforms

•  Multidimensional
•  FFTW interfaces
•  Cluster FFT

Vector Math

•  Trigonometric
•  Hyperbolic
•  Exponential
•  Log
•  Power
•  Root

Vector RNGs

•  Congruential
•  Wichmann-Hill
•  Mersenne Twister
•  Sobol
•  Neiderreiter
•  Non-deterministic

Summary Statistics

•  Kurtosis
•  Variation coefficient
•  Order statistics
•  Min/max
•  Variance-covariance

5

Deep Neural
Networks (DNN)

•  Convolution
•  Pooling
•  Normalization
•  ReLU
•  Softmax

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

BLAS – Basic Linear Algebra Subprograms
Defacto-standard APIs since the 1980s (Fortran 77)
§  Level 1 – vector-vector operations

§  Level 2 – matrix-vector operations

§  Level 3 – matrix-matrix operations

§  Precisions: single, double, single complex, double complex

Matrix Types: “dense” general, packed, triangular, banded Operation MKL Routine
“D is for double” Example Computational

complexity (work)
Vector Vector D AXPY y = y + α x O(N)
Matrix Vector D GEMV y = αAx + βy O(N²)
Matrix Matrix D GEMM C = αA * B + βC O(N³)

Original BLAS available at
http://netlib.org/blas/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Defacto-standard APIs since early 1990s

1000s of linear algebra functions

4 floating point precisions supported

Breadth of coverage:
§  Matrix factorizations: the 3 Amigos – LU, Cholesky, QR
§  Solving systems of linear equations
§  Condition number estimates
§  Singular value decomposition
§  Symmetric and non-symmetric eigenvalue problems
§  And much, much more

7

LAPACK – Linear Algebra PACKage

Original LAPACK
is available at:
http://netlib.org/lapack/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fast Fourier Transform (FFT)

Support multidimensional transforms

Multiple transforms on single call

Input/output strides supported
Allow FFT of a part of image, padding for better performance, transform combined with
transposition, facilitates development of mixed-language applications.

Integrated FFTW interfaces
Source code of FFTW3 and FFTW2 wrappers in C/C++ and Fortran are provided.

FFTW3 wrappers are also built into the library.

8

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector Math Functions

9

§  Arithmetic
–  add/sub/sqrt/ ...

§  Exponential and log
–  exp/pow/log/log10

§  Trigonometric and hyperbolic
–  sin/cos/sincos/tan(h)

–  asin/acos/atan(h)

§  Rounding
–  ceil, floor, round ...

§  And many more ...

§  Real and complex

§  Single/double precision

§  3 accuracy modes
–  High accuracy

–  (Almost correctly rounded)

–  Low accuracy
–  (2 lowest bits in error)

–  Enhanced performance
–  (1/2 the bits correct)

Example: y(i) = ex(i) for i =1 to n

Vector-based elementary functions allow
developers to balance accuracy with performance

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector Statistics

10

Random Number
Generators (RNGs)

Psuedo-random, quasi-random, and non-deterministic generators

Continuous and discrete distributions of various common distribution types

Summary Statistics
(SS)

Parallelized algorithms for computation of statistical estimates for raw multi-
dimensional datasets.

Convolution/
correlation

A set of routines intended to perform linear convolution and correlation
transformations for single and double precision real and complex data.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® MKL Sparse Solvers
PARDISO – Parallel Direct
Sparse Solver

Support a wide range of matrix types.

Based on BLAS level 3 update and pipelining parallelism.

Supports out-of-core execution for huge problem sizes.

New: Cluster support.

DSS – Direct Sparse Solver
Interface for PARDISO

An alternative, simplified interface to PARDISO.

ISS – Iterative Sparse Solver Symmetric positive definite: CG solver.

Non-symmetric indefinite: Flexible generalized minimal residual solver.

Based on Reverse Communication Interface (RCI).

11

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

More Intel® MKL Components

Data Fitting
 1D linear, quadratic, cubic, step-wise const, and user-defined splines

 Spline based interpolation/extrapolation

PDEs (Partial Differential Equations)
 Solving Helmhotz, Poisson, and Laplace problems.

Optimization Solvers
 Solvers for nonlinear least square problems with/without constraints

Support Functions
 Memory management

 Threading control

 …

12

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

What are Intel MKL DNN Primitives?
A set of performance primitives to speed up image recognition topologies on
existing or custom NN frameworks

§  Topologies: AlexNet, VGG, GoogleNet, ResNet

§  Frameworks: Caffe*, TensorFlow*, CNTK*, Torch*, MXNet*,
Operations (forward/backward) Algorithms

Activation ReLU

Normalization batch, local response

Pooling max, min, average

Convolutional fully connected, direct batched convolution

Inner product forward/backward propagation of inner product computation

Data manipulation layout conversion, split, concat, sum, scale

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

NN Primitives API Examples
Function Description

dnnConvolutionCreateForwardBias_F32(&primitive,	attributes,	
dnnAlgorithmConvolutionDirect,	dimension,	inputSize,	
outputSize,	filterSize,	stride,	inputOffset,	dnnBorderZeros);	

Create a convolution primitive for forward pass. This only creates a descriptor
of the operation. Input and output data is not specified yet.

dnnExecute(primitive,	inputs,	outputs)	
	

Execute the primitive. Input and output data is specified at the execution time.

dnnLayoutCreate(&layout,	params)	 Create a user defined data layout by specifying number of dimensions, and
size and stride for each dimension.

dnnLayoutCreateFromPrimitive(&layout,	primitive,	type)	
	
	
dnnAllocateBuffer(&ptr,	layout)	

Query the layout required by a primitive.

Allocate memory buffer for converted layout.

if	(!dnnLayoutCompare(l1,	l2))	
				dnnConversionCreate(&conversion_prim,	l1,	l2)	

Compare different layout types.

Create a conversion operation if necessary.

Intel Confidential -- CNDA required

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

DNN Primitives in Intel® MKL Highlights
A plain C API to be used in the existing DNN frameworks

Brings IA-optimized performance to popular image recognition topologies:
–  AlexNet, Visual Geometry Group (VGG), GoogleNet, and ResNet

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance . *Other names and brands may be property of others
Configurations:
•  2 socket system with Intel® Xeon® Processor E5-2699 v4 (22 Cores, 2.2 GHz,), 128 GB memory, Red Hat* Enterprise Linux 6.7, BVLC Caffe, Intel Optimized Caffe framework, Intel® MKL 11.3.3, Intel® MKL 2017
•  Intel® Xeon Phi™ Processor 7250 (68 Cores, 1.4 GHz, 16GB MCDRAM), 128 GB memory, Red Hat* Enterprise Linux 6.7, Intel® Optimized Caffe framework, Intel® MKL 2017
All numbers measured without taking data manipulation into account.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What’s New: Intel® MKL 2017

•  Optimized math functions to enable neural networks (CNN and DNN) for deep
learning

•  Improved ScaLAPACK performance for symmetric eigensolvers on HPC
clusters

•  New data fitting functions based on B-splines and monotonic splines

•  Improved optimizations for newer Intel processors, especially Knight’s Landing
Xeon Phi

•  Extended TBB threading layer support for all BLAS level-1 functions

16

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Intel(R) MKL Resources

Intel® MKL website
‒  https://software.intel.com/en-us/intel-mkl

Intel MKL forum

‒  https://software.intel.com/en-us/forums/intel-math-kernel-library

Intel® MKL benchmarks
‒  https://software.intel.com/en-us/intel-mkl/benchmarks#

Intel® MKL link line advisor
‒  http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Intel® Data Analytics Acceleration Library
(Intel® DAAL)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Data Analytics Acceleration Library
(Intel® DAAL)

An industry leading Intel® Architecture based data analytics acceleration
library of fundamental algorithms covering all machine learning stages.

(De-)Compression
Outlier Detection
Normalization

PCA
Statistical moments
Variance matrix
Pp-QR, SVD, Cholesky
Apriori
Sorting

Ridge linear regression
Naïve Bayes
SVM
Classifier boosting

Kmeans
EM GMM

Collaborative filtering

Neural Networks

Pre-processing Transformation Analysis Modeling Decision Making

S
ci

en
tif

ic
/E

ng
in

ee
rin

g

W
eb

/S
oc

ia
l

B
us

in
es

s

Validation

19

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel DAAL Main Features

Building end-to-end data applications

Optimized for Intel architectures, from Intel® Atom™, Intel® Core™,
Intel® Xeon®, to Intel® Xeon Phi™

A rich set of widely applicable algorithms for data mining and machine
learning

Batch, online, and distributed processing

Data connectors to a variety of data sources and formats: KDB*,
MySQL*, HDFS, CSV, and user-defined sources/formats

C++, Java, and Python APIs

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

PyDAAL (Python API for Intel® DAAL)

Turbocharged machine learning tool for Python developers

Interoperability and composability with the SciPy ecosystem:
–  Work directly with NumPy

–  Faster than scikit-learn

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Processing modes

Distributed
Processing

Online
Processing

D1 D2 D3

R = F(R1,…,Rk)

Si+1 = T(Si,Di)
Ri+1 = F(Si+1)

R1

Rk

D1

D2

Dk

R2 R

Si,Ri

Batch
Processing

D1 Dk-
1

Dk
…

Append

R = F(D1,…,Dk)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Algorithms Batch Distributed Online

Descriptive statistics
Low order moments √ √ √

Quantiles/sorting √

Statistical relationships

Correlation / Variance-Covariance √ √ √

(Cosine, Correlation) distance matrices √

Matrix decomposition

SVD √ √ √

Cholesky √

QR √ √ √

Regression Linear/ridge regression √ √ √

Classification

Multinomial Naïve Bayes √ √ √

SVM (two-class and multi-class) √

Boosting (Ada, Brown, Logit) √

Unsupervised learning

Association rules mining (Apriori) √

Anomaly detection (uni-/multi-variate) √

PCA √ √ √

KMeans √ √

EM for GMM √

Recommender systems ALS √ √

Deep learning
Fully connected, convolution,
normalization, activation layers, model,
NN, optimization solvers,

√

23

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Tensors
–  Multi-dimensional data structures to represent

complex data
Layers

–  Forward and backward computation
Topology

–  Predefined structure of a neural network
Optimization solver

–  Computing weights and biases to minimize the
objective function

Model
–  A network fleshed out with weights and biases of

each layer fully defined
Driver

–  Engine that drives training and scoring

Intel® DAAL Neural Networks Support
General purpose API for building typical NN topologies

http://www.mu-sigma.com/analytics/thought_leadership/cafe-cerebral-neural-network.html

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Compare NN Features in Intel MKL and Intel DAAL

Intel MKL Intel DAAL

DNN primitives Performance critical Easy integration and high performance

DNN layers No All building blocks for NN topology

Optimization solvers No Yes

Performance Top in the class, full control
from user side On-par with Intel MKL

Distributed memory Not easy, yet Can be integrated with Spark, MPI
cluster, …

Language support C C++, Java, Python

Target audience Users who want to speed up
existing frameworks

Users who want to build from scratch
or prototype

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Demo: Handwritten Digit Recognition

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Handwritten Digit Recognition

Training multi-class SVM for 10 digits recognition.

3,823 pre-processed training data.
–  available at

http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten
+Digits

99.6% accuracy with 1,797 test data from the same data provider.

Confusion	matrix:	
177.000	 		0.000	 				0.000	 				0.000	 				1.000	 				0.000	 				0.000	 				0.000					0.000					0.000						
0.000	 				181.000	 		0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				0.000					1.000					0.000						
0.000	 				2.000	 				173.000	 		0.000	 				0.000	 				0.000	 				0.000	 				1.000					1.000					0.000						
0.000	 				0.000	 				0.000	 				176.000	 		0.000	 				1.000	 				0.000	 				0.000					3.000					3.000						
0.000	 				1.000	 				0.000	 				0.000	 				179.000	 		0.000	 				0.000	 				0.000					1.000					0.000						
0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				180.000	 		0.000	 				0.000					0.000					2.000						
0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				180.000	 		0.000					1.000					0.000						
0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				170.000	 		1.000					8.000						
0.000	 				3.000	 				0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				0.000	 				166.000	 		5.000						
0.000	 				0.000	 				0.000	 				2.000	 				0.000	 				1.000	 				0.000	 				0.000	 				2.000	 				175.000	 			
	
Average	accuracy:	0.996	
Error	rate:							0.004	
Micro	precision:		0.978	
Micro	recall:					0.978	
Micro	F-score:				0.978	
Macro	precision:		0.978	
Macro	recall:					0.978	
Macro	F-score:				0.978	

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Training Handwritten Digits
void	trainModel()	
{	
	 /*	Initialize	FileDataSource<CSVFeatureManager>	to	retrieve	input	data	from	.csv	file	*/	
	 FileDataSource<CSVFeatureManager>	trainDataSource(trainDatasetFileName,	
	 	 DataSource::doAllocateNumericTable,	DataSource::doDictionaryFromContext);	
	
	 /*	Load	data	from	the	data	files	*/	
	 trainDataSource.loadDataBlock(nTrainObservations);	
	
	 /*	Create	algorithm	object	for	multi-class	SVM	training	*/	
	 multi_class_classifier::training::Batch<>	algorithm;	
	
	 algorithm.parameter.nClasses	=	nClasses;	
	 algorithm.parameter.training	=	training;	
	
	 /*	Pass	training	dataset	and	dependent	values	to	the	algorithm	*/	
	 algorithm.input.set(classifier::training::data,trainDataSource.getNumericTable());	
	
	 /*	Build	multi-class	SVM	model	*/	
	 algorithm.compute();	
	
	 /*	Retrieve	algorithm	results	*/	
	 trainingResult	=	algorithm.getResult();	
	
	 /*	Serialize	the	learned	model	into	a	disk	file	*/	
	 ModelFileWriter	writer("./model");	
	 writer.serializeToFile(trainingResult->get(classifier::training::model));	
}	

29

Create a numeric
table

Create an alg. Obj.

Set input and
parameters

Compute

Get result

Serialize the
learned model

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Handwritten Digit Prediction

30

void	testDigit()	
{	
	 /*	Initialize	FileDataSource<CSVFeatureManager>	to	retrieve	the	test	data	
from	.csv	file	*/	
	 FileDataSource<CSVFeatureManager>	testDataSource(testDatasetFileName,	
	 	 DataSource::doAllocateNumericTable,	DataSource::doDictionaryFromContext);	
	 testDataSource.loadDataBlock(1);	
	
	 /*	Create	algorithm	object	for	prediction	of	multi-class	SVM	values	*/	
	 multi_class_classifier::prediction::Batch<>	algorithm;	
	
	 algorithm.parameter.prediction	=	prediction;	
	
	 /*	Deserialize	a	model	from	a	disk	file	*/	
	 ModelFileReader	reader("./model");	
	 services::SharedPtr<multi_class_classifier::Model>	pModel(new	
multi_class_classifier::Model());	
	 reader.deserializeFromFile(pModel);	
	
	 /*	Pass	testing	dataset	and	trained	model	to	the	algorithm	*/	
	 algorithm.input.set(classifier::prediction::data,	
testDataSource.getNumericTable());	
	 algorithm.input.set(classifier::prediction::model,	pModel);	
	
	 /*	Predict	multi-class	SVM	values	*/	
	 algorithm.compute();	
	
	 /*	Retrieve	algorithm	results	*/	
	 predictionResult	=	algorithm.getResult();	
	
	 /*	Retrieve	predicted	labels	*/	
	 predictedLabels	=	predictionResult->get(classifier::prediction::prediction);	
}	

Deserialize
learned model

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SVM Performance Boosts Using Intel® DAAL vs. scikit-learn
on Intel® CPU

31

Configuration Info - Versions: Intel® Data Analytics Acceleration Library 2016 U2, scikit-learn 0.16.1; Hardware: Intel Xeon E5-2680 v3 @ 2.50GHz, 24 cores, 30 MB L3 cache per CPU, 256 GB RAM; Operating System:
Red Hat Enterprise Linux Server release 6.6, 64-bit.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

0

2

4

6

8

10

12

Training Prediction

S
pe

ed
up

11.25X

6.77X

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Intel® DAAL+ Intel® MKL = Complementary Big Data
Libraries Solution

Intel MKL Intel DAAL
C and Fortran API
Primitive level

Python, Java & C++ API
High-level

Processing of homogeneous data in single or
double precision

Processing heterogeneous data (mix of integers and floating point),
internal conversions are hidden in the library

Type of intermediate computations is defined by
type of input data (in some library domains higher
precision can be used)

Type of intermediate computations can be configured independently
of the type of input data

Most of MKL supports batch computation mode
only

3 computation modes: Batch, streaming and distributed

Cluster functionality uses MPI internally Developer chooses communication method for distributed
computation (e.g. Spark, MPI, etc.) Code samples provided.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Summary

Intel® DAAL is the only data analytics library optimized for current and future
Intel® Architectures.

Product page:

§  https://software.intel.com/en-us/intel-daal

Forum:

§  https://software.intel.com/en-us/forums/intel-data-analytics-acceleration-library

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

34 34

